MAT232 Final Exam Prep
April 2023 Exam
A
1
r → ( t ) = ⟨ t 2 + 2 t + 3 , 4 t cos t , 2 e 3 t ⟩
r → ′ ( t ) = ⟨ 2 t + 2 , 4 cos t − 4 t sin t , 6 e 3 t ⟩
r → ′ ( 0 ) = ⟨ 2 , 4 , 6 ⟩ direction
r → ( 0 ) = ⟨ 3 , 0 , 2 ⟩
T → ( t ) = P + D →
T → ( t ) = ⟨ 3 , 0 , 2 ⟩ + t ⟨ 2 , 4 , 6 ⟩
T → ( t ) = ⟨ 3 , 0 , 2 ⟩ + t ⟨ 1 , 2 , 3 ⟩
2
Arc Length
r → ( t ) = ⟨ t 2 2 , ( 2 t + 1 ) 3 2 3 ⟩
for 0 ≤ t ≤ 4
| r → ′ ( t ) | = ∫ 0 4 x ′ ( t ) 2 + y ′ ( t ) 2 \differential t
x ( t ) = t 2 2
x ′ ( t ) = 2 t 2 = t
y ( t ) = 1 3 ( 2 t + 1 ) 3 2
y ′ ( t ) = 1 3 3 2 ( 2 t + 1 ) 1 2 ( 2 )
y ′ ( t ) = 1 3 3 ( 2 ) 2 ( 2 t + 1 ) 1 2
y ′ ( t ) = 1 3 3 ( 2 t + 1 ) 1 2
y ′ ( t ) = ( 2 t + 1 ) 1 2 = 2 t + 1
| r → ′ ( t ) | = ∫ 0 4 t 2 + 2 t + 1 \differential t
| r → ′ ( t ) | = ∫ 0 4 ( t + 1 ) 2 \differential t
| r → ′ ( t ) | = ∫ 0 4 t + 1 \differential t
| r → ′ ( t ) | = ( 1 2 t 2 + t ) 0 4
| r → ′ ( t ) | = ( 1 2 ( 4 ) 2 + ( 4 ) ) = 12
3
Absolute max and minimum
g ( x , y ) = x 2 − 2 x y + 2 y
R = { ( x , y ) : 0 ≤ x ≤ 3 , 0 ≤ y ≤ 2 }
g x ( x , y ) = 2 x − 2 y
g y ( x , y ) = − 2 x + 2
g x = 0
g y = 0
g x x ( x , y ) = 2
g y y ( x , y ) = 0
g x y ( x , y ) = − 2
D ( x , y ) = g x x ( x , y ) g y y ( x , y ) − [ g x y ( x , y ) ] 2
D ( x , y ) = ( 2 ) ( 0 ) − [ ( − 2 ) ] 2 = − 4
for ( 2 , 2 ) we have D < 0 meaning it's a saddle point.
Then plug in points:
g ( 0 , 0 ) = ( 0 ) 2 − ( 2 ) ( 0 ) ( 0 ) + ( 2 ) ( 0 ) = 0
g ( 0 , 2 ) = ( 0 ) 2 − ( 2 ) ( 0 ) ( 2 ) + ( 2 ) ( 2 ) = 4
g ( 3 , 0 ) = ( 3 ) 2 − ( 2 ) ( 3 ) ( 0 ) + ( 2 ) ( 0 ) = 9
g ( 3 , 2 ) = ( 3 ) 2 − ( 2 ) ( 3 ) ( 2 ) + ( 2 ) ( 2 ) = 1
g ( 1 , 1 ) = ( 1 ) 2 − ( 2 ) ( 1 ) ( 1 ) + ( 2 ) ( 1 ) = 1
g ( 2 , 2 ) = ( 2 ) 2 − ( 2 ) ( 2 ) ( 2 ) + ( 2 ) ( 2 ) = 0
4
Which are true
x = t − t 2
y = t − t 3
d 2 y d x 2 = 2 − 6 t + 6 t 2 ( 1 − 2 t ) 3
\differential y \differential x = \differential y \differential t \differential x \differential t
\differential y \differential t = 1 − 3 t 2
\differential x \differential t = 1 − 2 t
\differential y \differential x = 1 − 3 t 2 1 − 2 t
d 2 y d x 2 = \differential \differential t ( \differential y \differential x ) \differential x \differential t
d 2 y d x 2 = \differential \differential t ( 1 − 3 t 2 1 − 2 t ) 1 − 2 t
u = 1 − 3 t 2
u ′ = − 6 t
v = 1 − 2 t
v ′ = − 2
\differential \differential t ( u v ) = u ′ v − v ′ u v 2
\differential \differential t ( u v ) = ( − 6 t ) ( 1 − 2 t ) − ( − 2 ) ( 1 − 3 t 2 ) ( 1 − 2 t ) 2
\differential \differential t ( u v ) = ( − 6 t + 12 t 2 ) − ( − 2 + 6 t 2 ) ( 1 − 2 t ) 2
\differential \differential t ( u v ) = ( − 6 t + 6 t 2 + 2 ) ( 1 − 2 t ) 2
d 2 y d x 2 = ( − 6 t + 6 t 2 + 2 ) ( 1 − 2 t ) 2 1 − 2 t
d 2 y d x 2 = ( − 6 t + 6 t 2 + 2 ) ( 1 − 2 t ) 3
True
r = 4 2 cos θ − sin θ has m = 2 and y int b = − 4
2 r cos θ − r sin θ = 4
2 x − y = 4
− y = 4 − 2 x
y = 2 x − 4
True
Directions of zero change at a point ( a , b ) on surface z = f ( x , y ) are orthogonal to ∇ → f ( a , b )
Tangent plane to the surface f ( x , y ) = ln ( 2 x + y ) at point ( − 1 , 3 ) is 2 x + y − z − 1 = 0
f x = 2 2 x + y
f y = 1 2 x + y
f x ( − 1 , 3 ) = 2 ( 2 ) ( − 1 ) + 3 = 2
f y ( − 1 , 3 ) = 1 ( 2 ) ( − 1 ) + 3 = 1
f ( − 1 , 3 ) = ln ( ( 2 ) ( − 1 ) + 3 ) = 0
z − z 0 = f x ( − 1 , 3 ) ( x − x 0 ) + f y ( − 1 , 3 ) ( y − y 0 )
z = 2 ( x + 1 ) + ( y − 3 )
z = 2 x + 2 + y − 3
z = 2 x + y − 1
2 x + y − 1 − z = 0
True
5
Which are true
∫ 0 1 ∫ 0 3 x e x y \differential x \differential y = e 3 − 4
0 ≤ x ≤ 3
0 ≤ y ≤ 1
∫ 0 3 ∫ 0 1 x e x y \differential y \differential x
∫ 0 3 x ∫ 0 1 e x y \differential y \differential x
∫ 0 3 x [ x − 1 e x y ] 0 1 \differential x
∫ 0 3 x [ ( e x x − 1 x ) ] \differential x
∫ 0 3 e x − 1 \differential x
[ e x − x ] 0 3
[ e 3 − 3 ] − [ e 0 − 0 ]
[ e 3 − 3 ] − [ 1 ]
[ e 3 − 3 ] − 1
e 3 − 3 − 1
e 3 − 4
True
f ( x , y , z ) = 2 x y + z
C is given by r → ( t ) = ⟨ cos t , sin t , t ⟩
0 ≤ t ≤ π
∫ C f ( x , y , z ) \differential s = 2 ∫ 0 π sin 2 t + t \differential t
r → ′ ( t ) = ⟨ − sin t , cos t , 1 ⟩
| r → ′ ( t ) | = ( − sin t ) 2 + ( cos t ) 2 + 1
| r → ′ ( t ) | = sin 2 t + cos 2 t + 1
| r → ′ ( t ) | = 2
f ( r → ( t ) )
∫ C f ( x , y , z ) \differential s = ∫ 0 π f ( r → ( t ) ) | r → ′ ( t ) | \differential t
∫ C f ( x , y , z ) \differential s = ∫ 0 π f ( r → ( t ) ) | 2 | \differential t
∫ C f ( x , y , z ) \differential s = 2 ∫ 0 π sin 2 t + t \differential t
A line integral ∫ C F → ⋅ d r → is path independent in the domain D of the vector field F → if and only if ∫ C ′ F → ⋅ d r → = 0 for every closed path C ′ in D
Let f ( x , y , z ) = x y z , if the vector field F → = ⟨ y z , x z , x y ⟩ = ∇ → f and C is a smooth curve joining points A ( − 1 , 3 , 9 ) and B ( 1 , 6 , − 4 ) then ∫ C F → ⋅ d r → = 3
It's a conservative field
So we can just do f ( B ) − f ( A )
f ( B ) = ( 1 ) ( 6 ) ( − 4 ) = − 24
f ( A ) = ( − 1 ) ( 3 ) ( 9 ) = − 27
− 24 − − 27 = 3
True
B
1
2
a
f is differentiable
a is a constant
u = a ( x + c t ) determine whether w = f ( u ) satisfies ∂ 2 w ∂ t 2 = c 2 ∂ 2 w ∂ x 2
u = a x + a c t
w t t
w t = \differential f \differential u ∂ u ∂ t
w t t = ∂ ∂ t w t
w t t = ∂ ∂ t [ \differential f \differential u ∂ u ∂ t ]
\differential f \differential u ∂ u ∂ t = a c f ′ ( u )
∂ ∂ t [ a c f ′ ( u ) ]
a c ∂ ∂ t [ f ′ ( u ) ]
a c ∂ ∂ t [ f ′ ( u ) ] = a c [ d 2 f d u 2 ∂ u ∂ t ]
a c ∂ ∂ t [ f ′ ( u ) ] = a c [ a c f ″ ( u ) ]
a c ∂ ∂ t [ f ′ ( u ) ] = a 2 c 2 f ″ ( u )
w x x
w x = \differential f \differential u ∂ u ∂ x
w x x = ∂ ∂ x [ \differential f \differential u ∂ u ∂ x ]
\differential f \differential u ∂ u ∂ x = a f ′ ( u )
∂ ∂ x [ a f ′ ( u ) ]
a ∂ ∂ x [ f ′ ( u ) ]
a ∂ ∂ x [ f ′ ( u ) ] = a [ d 2 f d u 2 ∂ u ∂ x ]
a ∂ ∂ x [ f ′ ( u ) ] = a [ a f ″ ( u ) ]
a ∂ ∂ x [ f ′ ( u ) ] = a 2 f ″ ( u )
w t t = c 2 w x x
a 2 c 2 f ″ ( u ) = c 2 a 2 f ″ ( u )
True
b
Find max and min values of the function f ( x , y ) = 3 x + 4 y on x 2 + y 2 = 1
g ( x , y ) = x 2 + y 2 − 1
∇ → f = ⟨ 3 , 4 ⟩
∇ → g = ⟨ 2 x , 2 y ⟩
∇ → f = λ ∇ → g
3 = λ ( 2 x )
4 = λ ( 2 y )
3 2 x = λ
4 2 y = λ
x = 3 2 λ
y = 4 2 λ
3 2 x = 4 2 y
6 y = 8 x
3 y = 4 x
y = 4 3 x
3 4 y = x
x 2 + ( 4 3 x ) 2 = 1
x 2 + 16 9 x 2 = 1
9 9 x 2 + 16 9 x 2 = 1
25 9 x 2 = 1
25 x 2 = 9
x 2 = 9 25
x = ± 9 25 = ± 3 5
y = 4 3 x
y = 4 3 ( ± 9 25 )
y = ± 4 3 ( 9 25 )
y = ± 4 3 9 25 = ± 4 3 3 5
y = ± 12 15
f ( ± 3 5 , ± 12 15 )
f ( 3 5 , 12 15 ) = 9 5 + 48 15 = 5
f ( 3 5 , − 12 15 ) = 9 5 − 48 15 = − 7 5
f ( − 3 5 , 12 15 ) = − 9 5 + 48 15 = 7 5
f ( − 3 5 , − 12 15 ) = − 9 5 − 48 15 = − 5
Absolute minimum is − 3 5 , − 12 15
Absolute max is 3 5 , 12 15
3
4
We have the integral ∫ 0 4 ∫ y 2 y 2 + 1 2 x − y 2 \differential x \differential y
a
u = 2 x − y 2
v = y 2
Sketch the region
0 ≤ y ≤ 4
y 2 ≤ x ≤ y 2 + 1
x = y 2
x = y 2 + 1
Intersections
0 = 2 x ⟹ x = 0
4 = 2 x ⟹ x = 2
0 = 2 x − 2 ⟹ x = 1
4 = 2 x − 2 ⟹ x = 3
Transform Parallelogram
( 0 , 0 )
( 1 , 0 )
( 2 , 4 )
( 3 , 4 )
( u = 0 , v = 0 )
( u = 1 , v = 0 )
( u = 0 , v = 2 )
( u = 1 , v = 2 )
left=-5; right=5;
top=5; bottom=-5;
---
y=2x
y=2x-2
y=0|dashed
y=4|dashed
(0,0)
(2,4)
(1,0)
(3,4)
left=-5; right=5;
top=5; bottom=-5;
---
(0,0)
(1,0)
(0,2)
(1,2)
b
Compute the jacobian
u = 2 x − y 2
u = 1 2 ( 2 x − y )
v = y 2
v = 1 2 ( y )
u x = 1
u y = − 1 2
v x = 0
v y = 1 2
| J | = | u x u y v x v y |
| J | = | 1 − 1 2 0 1 2 |
| J | = ( 1 ) ( 1 2 ) − ( − 1 2 ) ( 0 ) = 1 2
c
f u , v ( u , v ) = f x , y ( u ( x , y ) , v ( x , y ) ) | J |
f ( x , y ) = 2 x − y 2
u = 2 x − y 2
v = y 2
Inverse
2 u = 2 x − 2 v
2 u + 2 v = 2 x
u + v = x
y = 2 v
Jacobian
f ( u , v ) = ( 2 ) ( u + v ) − 2 v 2
f ( u , v ) = 2 u + 2 v − 2 v 2
f ( u , v ) = 2 u 2
f ( u , v ) = u
u | J |
f u , v ( u , v ) = 2 u
0 ≤ u ≤ 1
0 ≤ v ≤ 2
∫ 0 1 2 u ∫ 0 2 1 \differential v \differential u
∫ 0 1 2 u [ v ] 0 2 \differential u
∫ 0 1 4 u \differential u
4 ∫ 0 1 u \differential u
4 [ 1 2 u 2 ] 0 1
4 [ 1 2 ( 1 ) 2 ]
4 [ 1 2 ] = 2
5
a
b
Using the previous parameterization compute:
∫ C ( x y 2 + x 2 ) \differential x + ( 4 x − 1 ) \differential y
Green's Theorem
Since ∫ C P \differential x + Q \differential y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) \differential A
P = x y 2 + x 2
Q = 4 x − 1
∂ P ∂ y = 2 x y
∂ Q ∂ x = 4
∬ D 4 − 2 x y \differential A
− 3 ≤ x ≤ 0
0 ≤ y ≤ x + 3
∫ − 3 0 ∫ 0 x + 3 4 − 2 x y \differential y \differential x
∫ − 3 0 2 ∫ 0 x + 3 2 − x y \differential y \differential x
∫ − 3 0 2 [ 2 y − x 2 y 2 ] 0 x + 3 \differential x
∫ − 3 0 2 [ 2 ( x + 3 ) − x 2 ( x + 3 ) 2 ] \differential x
∫ − 3 0 2 [ 2 x + 6 − x 2 ( x 2 + 6 x + 9 ) ] \differential x
∫ − 3 0 2 [ 2 x + 6 − ( x 3 2 + 6 x 2 2 + 9 x 2 ) ] \differential x
2 ∫ − 3 0 [ 2 x + 6 − ( x 3 2 + 6 x 2 2 + 9 x 2 ) ] \differential x
2 ∫ − 3 0 2 x + 6 − x 3 2 − 6 x 2 2 − 9 x 2 \differential x
2 [ x 2 + 6 x − 1 2 1 4 x 4 − x 3 − 9 2 1 2 x 2 ] − 3 0
2 [ x 2 + 6 x − 1 8 x 4 − x 3 − 9 4 x 2 ] − 3 0
2 [ ( ( 0 ) 2 + 6 ( 0 ) − 1 8 ( 0 ) 4 − ( 0 ) 3 − 9 4 ( 0 ) 2 ) − ( ( − 3 ) 2 + 6 ( − 3 ) − 1 8 ( − 3 ) 4 − ( − 3 ) 3 − 9 4 ( − 3 ) 2 ) ]
− 2 [ ( ( − 3 ) 2 + 6 ( − 3 ) − 1 8 ( − 3 ) 4 − ( − 3 ) 3 − 9 4 ( − 3 ) 2 ) ]
− 2 [ ( 9 − 18 − 81 8 − ( − 27 ) − 81 4 ) ]
− 2 [ ( 9 − 18 − 81 8 − ( − 27 ) − 81 4 ) ] = 99 4
Directly
C 1
∫ C ( x y 2 + x 2 ) \differential x + ( 4 x − 1 ) \differential y
x ( t ) = 0
x ′ ( t ) = 0
y ( t ) = 3 t
y ′ ( t ) = 3
For 0 ≤ t ≤ 1
P = x y 2 + x 2 = ( 0 ) ( 3 ) 2 + ( 0 ) 2 = 0
Q = ( 4 ) ( 0 ) − ( 1 ) = − 1
∫ 0 1 P \differential x \differential t + Q \differential y \differential t \differential t
∫ 0 1 0 ( 0 ) + ( − 1 ) ( 3 ) \differential t
∫ 0 1 − 3 \differential t
3 ∫ 1 0 1 \differential t
3 [ t ] 1 0
3 [ − 1 ] = − 3
C 2
∫ C ( x y 2 + x 2 ) \differential x + ( 4 x − 1 ) \differential y
x ( t ) = − 3 t
y ( t ) = − 3 t + 3
for 0 ≤ t ≤ 1
x ′ ( t ) = − 3
y ′ ( t ) = − 3
P | x ( t ) , y ( t ) = ( − 3 t ) ( − 3 t + 3 ) 2 + ( − 3 t )
( − 3 t ) ( − 3 t + 3 ) ( − 3 t + 3 ) + ( − 3 t )
( − 3 t ) ( 9 t 2 − 18 t + 9 ) + ( − 3 t )
( − 27 t 3 + 54 t 2 − 27 t ) + ( − 3 t )
− 27 t 3 + 54 t 2 − 27 t − 3 t
− 27 t 3 + 54 t 2 − 30 t
Q | x ( t ) , y ( t ) = 4 ( − 3 t ) − 1 = − 12 t − 1
∫ 0 1 P \differential x \differential t + Q \differential y \differential t \differential t
∫ 0 1 P ( − 3 ) + Q ( − 3 ) \differential t
− 3 ∫ 0 1 P + Q \differential t
− 3 ∫ 0 1 − 27 t 3 + 54 t 2 − 30 t − 12 t − 1 \differential t
− 3 ∫ 0 1 − 27 t 3 + 54 t 2 − 42 t − 1 \differential t
− 3 [ − 27 1 4 t 4 + 54 1 3 t 3 − 42 1 2 t 2 − t ] 0 1
− 3 [ − 27 1 4 + 54 1 3 − 42 1 2 − 1 ] = 129 4
C 3
∫ C ( x y 2 + x 2 ) \differential x + ( 4 x − 1 ) \differential y
x ( t ) = 3 t − 3
y ( t ) = 0
for 0 ≤ t ≤ 1
x ′ ( t ) = 3
y ′ ( t ) = 0
P | x ( t ) , y ( t ) = ( 3 t − 3 ) 2 = 9 t 2 − 18 t 2 + 9
Q | x ( t ) , y ( t ) = 4 ( 3 t − 3 ) − 1 = 12 t − 13
∫ 0 1 P \differential x \differential t + Q \differential y \differential t \differential t
3 ∫ 0 1 9 t 2 − 18 t 2 + 9 \differential t
27 ∫ 0 1 t 2 − 2 t 2 + 1 \differential t
27 [ 1 3 t 3 − 2 3 t 3 + t ] 0 1
27 [ 1 3 − 2 3 + 1 ] = 18
C 1 + C 2 + C 3
Exam 2022
A
1
C is a curve as x = t 2 and y = t 3 − 3 t
Find where C has horizontal and vertical tangent lines
x ′ ( t ) = 2 t
y ′ ( t ) = 3 t 2 − 3
Since \differential x \differential y = \differential x \differential t \differential y \differential t
Then when x ′ ( t ) = 0 it's a vertical tangent line
When y ′ ( t ) = 0 it's a horizontal tangent line
So there are vertical tangent lines at t = 0 and horizontal tangent lines at t = ± 1
2
Find arc length
r → ( t ) = ⟨ t 2 , 2 t , ln t ⟩ for 1 ≤ t ≤ 2
| r → ( t ) | = ∫ 1 2 \differential x \differential t 2 + \differential y \differential t 2 + \differential z \differential t 2 \differential t
\differential x \differential t = 2 t
\differential y \differential t = 2
\differential z \differential t = 1 t
| r → ( t ) | = ∫ 1 2 4 t 2 + 4 + 1 t 2 \differential t
| r → ( t ) | = ∫ 1 2 t − 2 ( 4 t 4 + 4 t 2 + 1 ) \differential t
| r → ( t ) | = ∫ 1 2 t − 2 ( 2 t 2 + 1 ) 2 \differential t
| r → ( t ) | = ∫ 1 2 t − 1 ( 2 t 2 + 1 ) \differential t
| r → ( t ) | = ∫ 1 2 2 t + t − 1 \differential t
| r → ( t ) | = [ t 2 + ln t ] 1 2
| r → ( t ) | = [ 4 + ln 2 ] − [ 1 ]
| r → ( t ) | = 3 + ln 2
3
A , B , C are constants
B > 0
C ≠ 0
Find all values of α such that T ( x , t ) = A + e − B t sin ( C x ) and it satisfies ∂ T ∂ t = α ∂ 2 T ∂ x 2
∂ T ∂ t = − B e − B t sin ( C x )
∂ T ∂ x = C cos ( C x ) e − B t
∂ 2 T ∂ x 2 = − e − B t C 2 sin ( C x )
− B e − B t sin ( C x ) = ( α ) ( − e − B t C 2 sin ( C x ) )
− B e − B t = ( α ) ( − e − B t C 2 )
B e − B t = ( α ) ( e − B t C 2 )
B = ( α ) ( C 2 )
B C 2 = α
4
Find absolute max and minimum
f ( x , y ) = x y − 3 x + y
D is the triangular region ( 0 , 0 ) , ( 2 , 0 ) , ( 0 , 2 )
f x = y − 3
f y = x − 1
f x x = 0
f y y = 0
f x y = 1
f x = 0
f y = 0
( 1 , 3 ) is our only interior crit point
Boundary
D ( x , y ) = f x x f y y − f x y 2
D ( x , y ) = − 1
D < 0
Saddle point on interior
5
Which are true?
1: f ( x , y ) = 2 x y the directional derivative in the direction of u → = ⟨ 4 5 , 3 5 ⟩ is D u → f ( 1 , 3 ) = 4
| u → | = ( 4 5 ) 2 + ( 3 5 ) 2
| u → | = 16 25 + 9 25 = 1
This is a unit vector
D u → f ( x 0 , y 0 ) = ∇ → f ( x 0 , y 0 ) ⋅ u →
∇ → f = ⟨ 2 y , 2 x ⟩
∇ → f ( 1 , 3 ) = ⟨ 2 , 6 ⟩
⟨ 2 , 6 ⟩ ⋅ ⟨ 4 5 , 3 5 ⟩
8 5 + 18 5
26 5 ≠ 4
2: the function F → ( x , y ) = ⟨ x 2 y , cos y , e ⟩ is a vector field
P = x 2 y
Q = cos y
R = e
P y = Q x
x 2 = 0
Not a gradient field
3: the curve r → ( t ) = ⟨ 0 , sin 2 t , 4 sin t − 3 ⟩ is a parabola
x = 0
y = sin 2 t
z = 4 sin t − 3
z − 3 = 4 sin t
z − 3 4 = sin t
y = ( sin t ) 2
y = ( z − 3 4 ) 2
y = 1 16 ( z − 3 ) 2
This is a parabola
4: ∫ C ∇ → f ⋅ d r → = 4 where f ( x , y , z ) = cos π x + sin π y − x y z and C is any path from ( 1 , 1 2 , 2 ) → ( 2 , 1 , − 1 )
If we're path independent
f ( B ) − f ( A )
f ( 2 , 1 , − 1 ) − f ( 1 , 1 2 , 2 )
( cos 2 π + sin π + 2 ) − ( cos π + sin π 2 − 1 )
( 3 ) − ( − 1 ) = 4
To prove it's path independent we need to know if it's a vector field
I can assume it's probably one, as we're given ∇ → f ⋅ d r → which implies that there is a gradient to the vector field.
B
1
a
z is a differentiable function of x = x ( t ) and y = y ( t ) with z x ( 1 , 2 ) = 4 and z y ( 1 , 2 ) = 2
If x and y are differentiable with x ( 0 ) = 1 and y ( 0 ) = 1 , x ′ ( 0 ) = 0.5 and z ′ ( 0 ) = 2 find y ′ ( 0 )
z ( x ( t ) , y ( t ) )
∂ z ∂ x \differential x \differential t + ∂ z ∂ y \differential y \differential t
z ′ ( 0 ) = z x ( x ( 0 ) , y ( 0 ) ) x ′ ( 0 ) + z y ( x ( 0 ) , y ( 0 ) ) y ′ ( 0 )
z ′ ( 0 ) = ( 4 ) ( 0.5 ) + ( 2 ) y ′ ( 0 )
2 = ( 4 ) ( 0.5 ) + ( 2 ) y ′ ( 0 )
2 = 2 + 2 y ′ ( 0 )
1 = 1 + y ′ ( 0 )
0 = y ′ ( 0 )
b
ψ is the tangent plane to the surface x 2 + x y 2 − y z 2 + 8 z = − 4 at the point A ( 2 , 0 , − 1 )
Find the equation of the tangent plane ψ and determine whether ( 0 , 0 , 0 ) lies on it.
f ( x , y , z ) = x 2 + x y 2 − y z 2 + 8 z
f ( x , y , z ) = − 4
f x = 2 x + y 2
f y = 2 x y − z 2
f z = 2 y z + 8
∇ → f ( x , y , z ) = ⟨ 2 x + y 2 , 2 x y − z 2 , 2 y z + 8 ⟩
This is our normal vector
0 = f x ( x 0 , y 0 , z 0 ) ( x − x 0 ) + f y ( x 0 , y 0 , z 0 ) ( y − y 0 ) + f z ( x 0 , y 0 , z 0 ) ( z − z 0 )
0 = f x ( 2 , 0 , − 1 ) ( x − 2 ) + f y ( 2 , 0 , − 1 ) ( y ) + f z ( 2 , 0 , − 1 ) ( z + 1 )
0 = ( ( 2 ) ( 2 ) ) ( x − 2 ) + ( − ( − 1 ) 2 ) ( y ) + ( 8 ) ( z + 1 ) = 4 x − y + 8 z
0 = 4 ( 0 ) − ( 0 ) + 8 ( 0 ) = 0
Origin lies on ψ
2
a
f ( x , y ) = 2 x y
In what directions at the point ( 1 , 2 ) is the directional derivative of f = 4
∇ → f ( x , y ) = ⟨ 2 y , 2 x ⟩
D u → f ( x , y ) = ∇ → f ( x , y ) ⋅ u →
D u → f ( x , y ) = ⟨ 2 y , 2 x ⟩ ⋅ u →
4 = ⟨ 2 y , 2 x ⟩ ⋅ u →
4 = 2 y u 1 + 2 x u 2
4 = 2 ( 2 ) u 1 + 2 ( 1 ) u 2
2 = 2 u 1 + u 2
1 = u 1 + 1 2 u 2
1 − 1 2 u 2 = u 1
u → = ⟨ 1 − 1 2 u 2 , u 2 ⟩
( 1 − 1 2 u 2 ) 2 + u 2 2 = 1
( 1 − 1 2 u 2 ) 2 + u 2 2 = 1
1 − 1 2 u 2 − 1 2 u 2 + 1 4 u 2 2 + u 2 2 = 1
1 − u 2 + 1 4 u 2 2 + 4 4 u 2 2 = 1
1 − u 2 + 5 4 u 2 2 = 1
5 4 u 2 2 − u 2 = 0
u 2 ( 5 4 u 2 − 1 ) = 0
5 4 u 2 = 1
u 2 = 4 5
u 1 = 1 − 1 2 u 2
u 1 = 1 − 1 2 4 5
u 1 = 1 − 4 10
u 1 = 10 10 − 4 10
u 1 = 6 10
u 1 = 3 5
u → = ⟨ 3 5 , 4 5 ⟩
Verify
u → = ⟨ − 3 5 , − 4 5 ⟩
u 2 = 0
⟹ u 1 = 1
Clearly unit vector
u → = ⟨ 1 , 0 ⟩
b
Determine the largest value of the product x y z
x , y , z ∈ R
x + y + z = 100
f ( x , y , z ) = 100
f ( x , y , z ) = x + y + z
g ( x , y , z ) = x y z
∇ → f ( x , y , z ) = ⟨ 1 , 1 , 1 ⟩
∇ → g ( x , y , z ) = ⟨ y z , x z , x y ⟩
1 = λ y z
1 = λ x z
1 = λ x y
λ = 1 y z
λ = 1 x z
λ = 1 x y
1 y z = 1 x z = 1 x y
x x y z = y x y z = z x y z
x = y = z
x + y + z = 100
3 x = 100
x = 100 3 = y = z
x y z
( 100 3 ) ( 100 3 ) ( 100 3 ) = 1000000 27 is the maximum value
However if x , y , z ∈ R then the max value is ∞
3
4
∬ R x y 3 \differential A where R is the region in the first quadrant enclosed by y = x y = 3 x x y = 1 x y = 4
Use the change of variables u = y x and v = x y
a
Sketch the region R
x y = 1
x y = 1
3 x 2 = 1
x 2 = 1 3
x = ± 1 3
x = 1 3
⟹ 1 = y 1 3
⟹ 1 1 3 = y
x y = 4
x y = 4
3 x 2 = 4
x 2 = 4 3
x = ± 4 3 ⟹ 4 3
⟹ 4 3 y = 4
⟹ y = 4 4 3
left=-5; right=5;
top=5; bottom=-5;
---
y=x
y=3x
xy=1
xy=4
(1,1)
(\sqrt{1/3},1/\sqrt{1/3})
(2,2)
(\sqrt{4/3},4/\sqrt{4/3})
( 1 , 1 )
( 1 3 , 1 3 − 1 )
u = 1 3 − 1 1 3
u = 1 1 3 1 3
u = 1 1 3 = 3
v = x y
v = 1 3 1 3 = 1
( 2 , 2 )
( 4 3 , 4 4 3 )
u = 4 4 3 − 1 4 3
u = 4 4 3 4 3
u = 4 4 3
u = 4 ÷ 4 3
u = 4 ⋅ 3 4
u = 3
v = x y
v = 4
( 1 , 1 )
( 3 , 1 )
( 1 , 4 )
( 3 , 4 ) left=-5; right=5;
top=5; bottom=-5;
---
(1,1)
(3,1)
(1,4)
(3,4)
b
Compute the jacobian
u = y x − 1
v = x y
| J | = | u x u y v x v y |
| J | = | − y x − 2 x − 1 y x |
| J | = ( x ) ( − y x − 2 ) − ( x − 1 ) ( y )
| J | = ( x ) ( − y x 2 ) − ( y x )
| J | = ( − y x ) − ( y x )
| J | = − 2 y x
| J | = 2 y x
c
u = y x
u x = y
v = x y
v = u x 2
v u = x 2
x = v u
y = u x
y = u v u
| J | − 1 = − x 2 y
| J | − 1 = − v u 2 u v u
| J | − 1 = − 1 2 u
| J | − 1 = 1 2 u
f x , y ( x , y ) = x y 3
f u , v ( u , v ) = f x , y ( x ( u , v ) , y ( u , v ) ) | J | − 1
f u , v ( u , v ) = ( 1 2 u ) f x , y ( v u , u v u )
f u , v ( u , v ) = ( 1 2 u ) ( v u ( u v u ) 3 )
f u , v ( u , v ) = ( 1 2 u ) ( v u ( u v ) ( u v u ) )
f u , v ( u , v ) = ( 1 2 u ) ( v 2 )
f u , v ( u , v ) = ( v 2 2 u )
∫ 1 4 ∫ 1 3 v 2 2 u \differential u \differential v
∫ 1 4 v 2 ∫ 1 3 1 2 u \differential u \differential v
∫ 1 4 v 2 [ 1 2 ln 2 u ] 1 3 \differential v
∫ 1 4 v 2 2 [ ln 2 ( 3 ) − ln 2 ] \differential v
∫ 1 4 v 2 2 [ ln 3 ] \differential v
ln 3 2 ∫ 1 4 v 2 \differential v
ln 3 2 [ 1 3 v 3 ] 1 4
ln 3 2 1 3 [ 4 3 − 4 ]
ln 3 2 1 3 [ ( 4 ) ( 4 2 − 1 ) ]
ln 3 2 1 3 [ ( 4 ) ( 16 − 1 ) ]
ln 3 2 1 3 [ ( 4 ) ( 15 ) ]
ln 3 2 1 3 [ ( 4 ) ( 3 ) ( 5 ) ]
ln 3 2 [ ( 4 ) ( 5 ) ]
ln 3 2 [ ( 2 ) ( 2 ) ( 5 ) ]
ln 3 [ ( 2 ) ( 5 ) ]
10 ln 3
5
Vector field F → ( x , y ) = ⟨ y , − x ⟩
C is the curve with a line segment from ( 2 , 0 ) → ( 2 , 2 ) → ( 0 , 2 )
Connecting ( 2 , 0 ) → ( 0 , 2 ) is a circle with x 2 + y 2 = 2 2
a
Parameterize C as three separate curves
C 1
C 2
x ( t ) = 2 − 2 t
y ( t ) = 2
for 0 ≤ t ≤ 1
C 3
x 2 = 2 2 − y 2
x 2 = 4 − y 2
x = 4 − y 2
y = 4 − x 2
x ( t ) = 2 sin t
y ( t ) = 2 cos t
for 0 ≤ t ≤ π 2
b
Compute the line integral ∫ C F → ⋅ d r →
C 1
∫ C 1 F → ⋅ d r → = ∫ 0 1 P \differential x \differential t + Q \differential y \differential t \differential t
P = y
Q = − x
x ( t ) = 2
x ′ ( t ) = 0
y ( t ) = 2 t
y ′ ( t ) = 2
∫ 0 1 − 2 ( 2 ) \differential t
− 4 ∫ 0 1 1 \differential t
− 4 [ t ] 0 1
− 4 [ 1 ] = − 4
C 2
∫ C 2 F → ⋅ d r → = ∫ 0 1 P \differential x \differential t + Q \differential y \differential t \differential t
x ( t ) = 2 − 2 t
x ′ ( t ) = − 2
y ( t ) = 2
y ′ ( t ) = 0
∫ 0 1 − 2 y \differential t
∫ 0 1 − ( 2 ) ( 2 ) \differential t = − 4
C 3
∫ C 3 F → ⋅ d r → = ∫ 0 π 2 P \differential x \differential t + Q \differential y \differential t \differential t
x ( t ) = 2 sin t
x ′ ( t ) = 2 cos t
y ( t ) = 2 cos t
y ′ ( t ) = − 2 sin t
P = y
Q = − x
for 0 ≤ t ≤ π 2
∫ 0 π 2 2 y cos t + 2 x sin t \differential t
∫ 0 π 2 4 cos 2 t + 4 sin 2 t \differential t
4 ∫ 0 π 2 cos 2 t + sin 2 t \differential t
4 ∫ 0 π 2 1 \differential t
4 [ t ] 0 π 2
4 π 2 = 2 π
C 1 + C 2 + C 3
c
Use Green's Theorem to evaluate ∫ C F → ⋅ d r →
∫ C F → ⋅ d r → = ∫ C P \differential x + Q \differential y
P = y
Q = − x
∫ C y \differential x − x \differential y
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) \differential A
Q x = − 1
P y = 1
∬ D ( − 1 − 1 ) \differential A
∬ D ( − 2 ) \differential A
∬ D − 2 \differential A
D is our region
\differential x \differential y
x = 4 − y 2
4 − y 2 ≤ x ≤ 2
0 ≤ y ≤ 2
∫ 0 2 ∫ 4 − y 2 2 − 2 \differential x \differential y
∫ 0 2 − 2 ∫ 4 − y 2 2 1 \differential x \differential y
∫ 0 2 − 2 [ x ] 4 − y 2 2 \differential y
∫ 0 2 − 2 [ 2 − 4 − y 2 ] \differential y
∫ 0 2 − 4 + 2 4 − y 2 \differential y
− 2 ∫ 0 2 2 − 4 − y 2 \differential y
− 2 ∫ 0 2 2 − ( 4 − y 2 ) 1 2 \differential y
∫ 0 2 − 4 \differential y − ∫ 0 2 ( 4 − y 2 ) 1 2 \differential y
[ − 4 y ] 0 2 − ∫ 0 2 ( 4 − y 2 ) 1 2 \differential y
[ − ( 4 ) ( 2 ) ] − ∫ 0 2 ( 4 − y 2 ) 1 2 \differential y
− 8 − ∫ 0 2 ( 4 − y 2 ) 1 2 \differential y
x = 4 − y 2
x 2 = 4 − y 2
x 2 + y 2 = 4
Now we evaluate this from 0 ≤ y ≤ 2
π r 2 is for the whole
We need a quarter
1 4 π r 2
1 4 π 2 2 = π
− 8 − 2 π
Exam Summer 2023
1
Write the equation of the plane that passes through the line of intersection of the planes P 1 and P 2 and is perpendicular to P 3
P 1 : − 2 x + y − z = 0 P 2 : x = 2 P 3 : x + y + z = 0
We want ( P 1 × P 2 ) × P 3
P 1 : ⟨ − 2 , 1 , − 1 ⟩
P 2 : ⟨ 1 , 0 , 0 ⟩
P 3 : ⟨ 1 , 1 , 1 ⟩
P 1 × P 2 = | i → j → k → − 2 1 − 1 1 0 0 |
P 1 × P 2 = ⟨ ( 1 ) ( 0 ) − ( − 1 ) ( 0 ) , ( − 2 ) ( 0 ) − ( − 1 ) ( 1 ) , ( − 2 ) ( 0 ) − ( 1 ) ( 1 ) ⟩
P 1 × P 2 = ⟨ 0 , 1 , − 1 ⟩
( P 1 × P 2 ) × P 3 = | i → j → k → 0 1 − 1 1 1 1 |
( P 1 × P 2 ) × P 3 = ⟨ ( 1 ) ( 1 ) − ( − 1 ) ( 1 ) , ( 0 ) ( 1 ) − ( − 1 ) ( 1 ) , ( 0 ) ( 1 ) − ( 1 ) ( 1 ) ⟩
( P 1 × P 2 ) × P 3 = ⟨ 2 , 1 , − 1 ⟩
2
Find minimum distance from ( 1 , 1 , 1 ) to S = { ( x , y , z ) ∈ R 3 : x 2 + y 2 4 − z 2 2 = 1 }
x 2 + 1 4 y 2 − 1 2 z 2 = 1
f ( x , y , z ) = ( x − 1 ) 2 + ( y − 1 ) 2 + ( z − 1 ) 2
g ( x , y , z ) = x 2 + y 2 4 − z 2 2 − 1
∇ → f = ⟨ 2 ( x − 1 ) , 2 ( y − 1 ) , 2 ( z − 1 ) ⟩
∇ → g = ⟨ 2 x , 1 2 y , − z ⟩
∇ → f = λ ∇ → g
2 x − 2 = λ 2 x
2 y − 2 = λ 2 y
2 z − 2 = − λ z
2 x − 2 2 x = λ
4 y − 4 y = λ
− 2 z + 2 z = λ
2 x − 2 2 x = 4 y − 4 y = − 2 z + 2 z
2 ( x − 1 ) 2 x = 4 y − 4 y = − 2 z + 2 z
x − 1 x = 4 y − 4 y = − 2 z + 2 z
y z ( x − 1 ) x y z = 4 x z ( y − 1 ) x y z = − 2 x y ( z − 1 ) x y z
y z x − y z = 4 x y z − 4 x z = − 2 x y z + 2 x y
y z ( x − 1 ) = 4 x z ( y − 1 ) = − 2 x y ( z − 1 )
y z = 0
4 x z = 0
− 2 x y = 0
2 x − 2 = λ 2 x
2 ( x − 1 ) = λ 2 x
x − 1 = λ x
− 1 = λ x − x
− 1 = x ( λ − 1 )
λ = 1
2 y − 2 = λ 2 y
2 ( y − 1 ) = 1 2 λ y
4 ( y − 1 ) = λ y
4 y − 4 = λ y
− 4 = λ y − 4 y
− 4 = y ( λ − 4 )
λ = 4
2 z − 2 = − λ z
− 2 = − λ z − 2 z
− 2 = − z ( λ + 2 )
λ = − 2
3
F is a vector field on R 2
A flow line of F → is a parameterized curve r → ( t ) : R → R 2 such that r → ′ ( t ) = F → ( r → ( t ) )
The velocity vector of r → ( t ) coincides with the vector F → ( r → ( t ) )
Consider the vector field F as ( x , y ) → [ − y x ] T
a
For each of the following curves, determine whether it's a flow line of the vector field F or not.
r → 1 ( t ) = ( e − 3 t , e 3 t )
F → ( r → 1 ( t ) )
F → ( e − 3 t , e 3 t )
( − e 3 t e − 3 t ) T
4
f ( x , y ) = { C exp ( − ( x 2 + y 2 ) k ) x ≥ 0 , y ≥ 0 0 otherwise
C e − ( x 2 + y 2 ) k
To have it be a valid PDF
∫ 0 ∞ f ( x ) \differential x = 1
∫ 0 ∞ ∫ 0 ∞ C e − x 2 + y 2 k \differential x \differential y = 1
∫ 0 ∞ C ∫ 0 ∞ e − x 2 + y 2 k \differential x \differential y = 1
∫ 0 ∞ C [ − k 2 x e − x 2 + y 2 k ] 0 ∞ \differential y = 1
∫ 0 ∞ C [ lim x → ∞ − k 2 x e − x 2 + y 2 k + lim x → 0 k 2 x e − x 2 + y 2 k ] \differential y = 1
∫ 0 ∞ C [ lim x → ∞ − k 2 x e − x 2 + y 2 k + lim x → 0 1 2 k x − 1 e − x 2 + y 2 k ] \differential y = 1
l'hôpital's rule.
∫ 0 ∞ C [ lim x → ∞ − k 2 x e − x 2 + y 2 k + lim x → 0 − 2 x k 2 x 2 e − x 2 + y 2 k ] \differential y = 1
∫ 0 ∞ C [ lim x → ∞ − k 2 x e − x 2 + y 2 k + lim x → 0 − 2 x ( k ) 2 x ( x ) e − x 2 + y 2 k ] \differential y = 1
∫ 0 ∞ C [ lim x → ∞ − k 2 x e − x 2 + y 2 k + lim x → 0 − k x e − x 2 + y 2 k ] \differential y = 1
l'hôpital's rule.
∫ 0 ∞ C [ lim x → ∞ − k 2 x e − x 2 + y 2 k + lim x → 0 − k x e − x 2 + y 2 k ] \differential y = 1
\differential \differential x ( − k x − 1 ) = k x − 2 = k x 2
k x 2 ( \differential \differential x [ − x 2 + y 2 k ] )
k x 2 ( 2 x )
x ( 2 k ) x ( x )
2 k x
l'hôpital's rule.
\differential \differential x 2 k x − 1 = − 2 k x − 2
− 2 k x − 2 2 x
− 4 k x x 2
− 4 k x
????
Exam Fall 2024
MAT232H5 F24 - Final Exam.pdf
A
1
Which of these parametric equations is an equation of the tangent line to the curve r → ( t ) = ⟨ ln t , t − 1 t − 2 , t ln t ⟩ where t = 1
r → ′ ( t ) = ⟨ 1 t , ⟩
u = t − 1
v = t − 2
u ′ = 1
v ′ = 1
u ′ v − v ′ u v 2
t − 2 − t + 1 ( t − 2 ) 2
− 1 ( t − 2 ) 2
− 1 ( t − 2 ) 2
r → ′ ( t ) = ⟨ 1 t , − 1 ( t − 2 ) 2 , ⟩
\differential \differential t t ln t = ln t + 1
r → ′ ( t ) = ⟨ 1 t , − 1 ( t − 2 ) 2 , ln t + 1 ⟩
r → ′ ( 1 ) = ⟨ 1 , − 1 ( 1 − 2 ) 2 , 1 ⟩
r → ′ ( 1 ) = ⟨ 1 , − 1 ( − 1 ) 2 , 1 ⟩
r → ′ ( 1 ) = ⟨ 1 , − 1 , 1 ⟩
This is our direction vector
Point at t = 1
r → ( 1 ) = ⟨ 0 , 0 , 0 ⟩
L = Point + t Vector
L = 0 → + t ⟨ 1 , − 1 , 1 ⟩
x = t
y = − t
z = t
2
Find the length of the curve r → ( t ) = ⟨ t cos t , t sin t , 2 2 3 t 3 2 ⟩
From Origin to ( − π , 2 , 2 2 π 3 2 3 )
2 2 3 t 3 2 = 2 2 π 3 2 3
2 2 t 3 2 = 2 2 π 3 2
t 3 2 = π 3 2
t = π
2 2 3 t 3 2 = 0
t 3 2 = 0
t = 0
0 ≤ t ≤ π
∫ 0 π x t 2 + y t 2 + z t 2 \differential t
r → ′ ( t ) = ⟨ cos t − t sin t , sin t + t cos t , 2 t ⟩
( cos t − t sin t ) 2 + ( sin t + t cos t ) 2 + ( 2 t ) 2
cos 2 t − 2 t sin t cos t + t 2 sin 2 t + sin 2 t + 2 t cos t sin t + t 2 cos 2 t + 2 t
cos 2 t + sin 2 t = 1
cos 2 t + sin 2 t − 2 t sin t cos t + t 2 sin 2 t + 2 t cos t sin t + t 2 cos 2 t + 2 t
1 − t 2 sin t cos t + t 2 sin 2 t + t 2 cos t sin t + t 2 cos 2 t + 2 t
1 − t sin 2 t + t sin 2 t + t 2 sin 2 t + t 2 cos 2 t + 2 t
1 + t 2 sin 2 t + t 2 cos 2 t + 2 t
1 + t 2 + 2 t
t 2 + 2 t + 1
p = 1
s = 2
f = 1 , 1
( t + 1 ) 2
∫ 0 π t + 1 \differential t
[ 1 2 t 2 + t ] 0 π
[ 1 2 π 2 + π ]
3
4
Which are true:
1: The cartesian equation ( x − 1 2 ) 2 + y 2 = 1 4 in polar coordinates is r = cos θ
( x − 1 2 ) 2
x 2 − x + 1 4 + y 2 = 1 4
x 2 − x + y 2 = 0
x 2 + y 2 = x
r 2 = r cos θ
r = cos θ
True
2: The polar equation r = 2 sin θ − 3 cos θ converted into cartesian is y = 3 x + 2
r sin θ − 3 r cos θ = 2
y − 3 x = 2
y = 2 + 3 x
True
3: For the polar curve r = 1 + cos θ there are no horizontal nor vertical tangents when θ = π
\differential y \differential x = \differential r \differential θ sin θ + r cos θ \differential r \differential θ cos θ − r sin θ
x = r cos θ
r = f ( θ )
x = f ( θ ) cos θ
y = f ( θ ) sin θ
\differential y \differential x = \differential r \differential θ sin θ + f ( θ ) cos θ \differential r \differential θ cos θ − f ( θ ) sin θ
\differential y \differential θ = − f ′ ( θ ) sin θ
\differential x \differential θ = f ′ ( θ ) cos θ
\differential r \differential θ = − sin θ
\differential y \differential x = − sin 2 θ +
5
Which are true
1:
x = t − sin t
y = 1 − cos t
t ∈ R
d 2 y \differential x 2 = − 1 ( 1 − cos t ) 2
\differential y \differential x = \differential r \differential θ sin θ + cos θ \differential r \differential θ sin θ − cos θ
\differential x \differential t = 1 − cos t
\differential y \differential t = sin t
\differential y \differential x = sin t 1 − cos t
d 2 y \differential x 2 = d d t ( \differential y \differential x ) \differential x \differential t
\differential \differential t ( \differential y \differential x ) = u ′ v − v ′ u v 2
u = 1 − cos t
u ′ = sin t
v = sin t
v ′ = cos t
\differential \differential t ( \differential y \differential x ) = sin 2 t − cos t ( 1 − cos t ) sin 2 t
\differential \differential t ( \differential y \differential x ) = sin 2 t − cos t + cos 2 t sin 2 t
\differential \differential t ( \differential y \differential x ) = − cos t + sin 2 t + cos 2 t sin 2 t
\differential \differential t ( \differential y \differential x ) = − cos t + 1 sin 2 t
\differential \differential t ( \differential y \differential x ) = − cos t − 1 sin 2 t
\differential \differential t ( \differential y \differential x ) = 1 − cos t sin 2 t
2: Given f ( x , y ) = e x cos y the direction derivative of f ( x , y ) at ( 1 , π 4 ) in the direction π 6 counterclockwise from the positive x-axis is D u → f ( 1 , π 4 ) = e 2 ( 3 − 1 ) 4
θ = π 6
u → = ⟨ cos θ , sin θ ⟩
u → = ⟨ cos π 6 , sin π 6 ⟩
cos π 6 = 3 2
sin π 6 = 1 2
u → = ⟨ 3 2 , 1 2 ⟩
f x = cos y e x
f y = − e x sin y
D u → f = ∇ → f ⋅ u →
D u → f = ⟨ cos y e x , − e x sin y ⟩ ⋅ ⟨ 3 2 , 1 2 ⟩
D u → f = 3 cos y e x 2 − e x sin y 2
D u → f = e x ( 3 cos y − sin y ) 2
D u → ( 1 , π 4 ) f = e ( 3 cos π 4 − sin π 4 ) 2 = e ( − 2 2 + 6 2 ) 2
D u → ( 1 , π 4 ) f = e ( − 6 − 2 2 ) 2
D u → ( 1 , π 4 ) f = e 2 ( 3 − 1 ) 4
3: The tangent plane to the surface x 2 + y 2 + z 2 = 4 at the point ( 1 , 1 , 2 ) is z = 2 − x − 1 2 − y − 1 2
f ( x , y , z ) = x 2 + y 2 + z 2 − 4
∇ → f ( x , y , z ) = ⟨ 2 x , 2 y , 2 z ⟩
Point: ( 1 , 1 , 2 )
f x ( x − x 0 ) + f y ( y − y 0 ) + f z ( z − z 0 ) = 0
f x ( x − 1 ) + f y ( y − 1 ) + f z ( z − 2 ) = 0
2 x ( x − 1 ) + 2 y ( y − 1 ) + 2 z ( z − 2 ) = 0
2 ( x − 1 ) + 2 ( y − 1 ) + 2 2 ( z − 2 ) = 0
2 x − 2 + 2 y − 2 + 2 2 z − 4 = 0
2 x − 2 + 2 y − 2 − 4 = − 2 2 z
2 x + 2 y − 8 = − 2 2 z
− 2 2 z = 2 x + 2 y − 8
z = − 2 x 2 2 − 2 y 2 2 + 8 2 2
z = − x 2 − y 2 + 4 2
True
6
Which are true
1: C is a curve with r → ( t ) and a → = r → ( a ) and b → = r → ( b ) . Then ∫ C ∇ → f ⋅ d r → = f ( b → ) − f ( a → ) = 0
If the field is conservative
Since we're given ∇ → f we can assume that it is.
a → would just be a set of points ( a 1 , a 2 , a 3 )
Since it's conservative it's path independent, so we can take any two end points.
However we don't know that C starts at a and ends at b
f ( b → ) − f ( a → ) = 0 implies it's a closed curve
I'll say it's not true, we don't know for sure.
2: given F → = ⟨ x 2 y 3 , x y 4 ⟩ there exists no function f ( x , y ) that satisfies F → = ∇ → f
Let's check if it's conservative
P = x 2 y 3
Q = x y 4
∂ P ∂ y = ∂ Q ∂ x
∂ P ∂ y = 3 y 2 x 2
∂ Q ∂ x = y 4
Not equal, not conservative
3: Given a triangular region with ( 0 , 0 ) , ( 1 , 0 ) , ( 0 , 1 ) , ∫ ∂ D x 4 \differential x + x y \differential y = − ∬ D y \differential A where ∂ D denotes the boundary of D
y = − x + 1
P = x 4
Q = x y
∂ P ∂ y = 0
∂ Q ∂ x = y
∬ D y \differential A
− ∬ D y \differential A
Just means that we can re arrange the boundaries of x , y
So true
B
1
2
a
z = e x 2 y
x ( u , v ) = u v
x ( u , v ) = ( u v ) 1 2
y ( u , v ) = 1 v
y ( u , v ) = v − 1
Find ∂ z ∂ u and ∂ z ∂ v
∂ z ∂ u = ∂ z ∂ x ∂ x ∂ u + ∂ z ∂ y ∂ y ∂ u
z x = 2 x y e x 2 y
x u = v 2 u v
z y = x 2 e x 2 y
y u = 0
∂ z ∂ u = z x x u + z y y u
∂ z ∂ u = ( 2 x y e x 2 y ) ( v 2 u v ) + ( x 2 e x 2 y ) ( 0 )
∂ z ∂ u = ( 2 x y e x 2 y ) ( v 2 u v )
∂ z ∂ v = ∂ z ∂ x ∂ x ∂ v + ∂ z ∂ y ∂ y ∂ v
z x = 2 x y e x 2 y
x v = u 2 u v
z y = x 2 e x 2 y
y v = − v − 2
∂ z ∂ v = z x x v + z y y v
∂ z ∂ v = ( 2 x y e x 2 y ) ( u 2 u v ) + ( x 2 e x 2 y ) ( − 1 v 2 )
b
Find points on x 2 − z 2 − 1 = 0 that are closest to the origin
f ( x , y , z ) = x 2 + y 2 + z 2
g ( x , y , z ) = x 2 − z 2 − 1
∇ → f = ⟨ 2 x , 2 y , 2 z ⟩
∇ → g = ⟨ 2 x , 0 , − 2 z ⟩
2 x = λ 2 x
2 y = λ 0
2 z = λ ( − 2 z )
0 = − 2 z λ − 2 z
0 = − 2 z ( λ + 1 )
z = 0
λ = − 1
λ = ± 1
x 2 − z 2 − 1 = 0
x = 0
− z 2 − 1 = 0
− z 2 = 1
z 2 = − 1
z = − i ∨ z = i
z = 0
y = 0
x 2 − z 2 = 1
( x − z ) ( x + z ) = 1
x − z = 1
x + z = 1
x = 1 + z
z = 1 + x
( 1 + z ) 2 − z 2 = 1
x 2 − ( 1 + x ) 2 = 1
x 2 − ( x 2 + 2 x + 1 ) = 1
− 2 x − 1 = 1
− 2 x = 2
x = − 1
x = ± 1
z = 0
y = 0
3
a
b
Convert polar integral into cartesian
∫ 0 π 4 ∫ 1 2 sec θ r 5 sin 2 θ \differential r \differential θ
Region
Function
r 4 sin 2 θ
( x 4 + 2 x 2 y 2 + y 4 ) sin 2 θ
x 4 sin 2 θ + 2 x 2 y 2 sin 2 θ + y 4 sin 2 θ
sin θ = y r
sin 2 θ = y x 2 + y 2
x 4 y x 2 + y 2 + 2 x 2 y 3 x 2 + y 2 + y 5 x 2 + y 2
f ( x , y ) = x 4 y + 2 x 2 y 3 + y 5 x 2 + y 2
x 2 + y 2 = 1
x = 1 − y 2
y = x
y = 1 − y 2
y 2 = 1 − y 2
0 = 1 − 2 y 2
1 = 2 y 2
1 2 = y 2
1 2 = y
x 2 + 1 2 = 1
x 2 = 1 2
x = 1 2
∫ 1 2 ∫ 0 x f ( x , y ) \differential y \differential x + ∫ 0 1 2 ∫ 1 − y 2 x f ( x , y ) \differential x \differential x
∫ 0 2 ∫ 2 4 − x 2 x + 2 y \differential y \differential x
Transform region
Transform Function
∫ π 4 π 2 ∫ 2 sin θ 2 r 2 cos θ + 2 r 2 sin θ \differential r \differential θ
4
∫ 1 2 ∫ 1 y y y x e x y \differential x \differential y
Change of variables as u = x y and v = y x
a
Sketch region
1 y ≤ x ≤ y
x = 1 y
y = x
1 ≤ y ≤ 2
left=0; right=3;
top=3; bottom=0;
---
xy=1
y=x
y=1
y=2
(1,1)
(2,2)
(0.5,2)
( 1 , 1 )
( 2 , 2 )
y = 1 x
y = 2
2 = 1 x
2 x = 1
x = 1 2
y = 1 1 2 = 2
( 1 2 , 2 )
( 1 , 1 )
( 2 , 2 )
( 1 2 , 2 )
left=-2; right=4;
top=4; bottom=-2;
---
(1,1)
(2,1)
(1,2)
y=1
x=1
y=-x+3
v = 1
u = 1
m = v 2 − v 1 u 2 − u 1
m = 1 − 2 2 − 1 = − 1
v = − 1 u + b
( 2 ) = − 1 + b
3 = + b
v = − u + 3
b
Compute jacobian
u = ( x y ) 1 2
u x = y 2 x y
u y = x 2 x y
v = y x 1 2
v = ( y x − 1 ) 1 2
v x = 1 2 y x − 1 ( − y x − 2 )
v x = y x − 2 2 y x − 1
v x = y x − 2 2 y x − 1 2
v x = y x − 2 x 1 2 2 y
v x = y x 1 2 − 2 2 y
v x = y x 1 2 − 4 2 2 y
v x = y x − 3 2 2 y
v x = − y 2 y x 3 2
v y = 1 2 ( y x ) − 1 2 1 x
| J | = | u x u y v x v y |
| J | = | y 2 x y x 2 x y − y 2 x 3 y 1 2 x y x |
5
a
Conservative field
F → = ⟨ y z , x z , x y ⟩ = ∇ → f
f ( x , y , z ) = x y z
Find ∫ C F → ⋅ d r → along any smooth curve C from ( − 1 , 3 , 9 ) → ( 1 , 6 , − 4 )
As it's conservative, it's path independent
f ( 1 , 6 , − 4 ) − f ( − 1 , 3 , 9 )
( 6 ) ( − 4 ) + ( 3 ) ( 9 )
( 2 ) ( 3 ) ( − 4 ) + ( 3 ) ( 9 )
( 2 ) ( − 12 ) + 27
( − 24 ) + 27
3
b
R = { ( x , y ) : − 1 ≤ x ≤ 1 , − 1 ≤ y ≤ 1 }
Parameterize the boundary of the region R as ∂ R
Evaluate the line integral as ∫ ∂ R x y \differential y − y 2 \differential x
( − 1 , − 1 )
( − 1 , 1 )
( 1 , − 1 )
( 1 , 1 )
C 1 : ( − 1 , − 1 ) → ( − 1 , 1 )
C 2 : ( − 1 , − 1 ) → ( 1 , − 1 )
C 3 : ( − 1 , 1 ) → ( 1 , 1 )
C 4 : ( 1 , − 1 ) → ( 1 , 1 )
C 1
P = − y 2
Q = x y
\differential x = 0
\differential y = 2
∫ 0 1 P \differential x + Q \differential y \differential t
∫ 0 1 2 x y \differential t
∫ 0 1 2 ( − 1 ) ( − 1 + 2 t ) \differential t
∫ 0 1 − 2 ( − 1 + 2 t ) \differential t
− 2 ∫ 0 1 − 1 + 2 t \differential t
− 2 [ − 1 t + t 2 ] 0 1
− 2 [ − 1 + 1 ] = 0
C 2
x ( t ) = − 1 + 2 t
y ( t ) = − 1
P = − y 2
Q = x y
\differential x = 2
\differential y = 0
∫ 0 1 − 2 y 2 \differential x
∫ 0 1 − 2 ( − 1 ) 2 \differential x
∫ 0 1 − 2 \differential x
[ − 2 x ] 0 1 = − 2
C 3
x ( t ) = − 1 + 2 t
y ( t ) = 1
P = − y 2
Q = x y
∫ C 3 ? \differential t = − 2
C 4
C 1 + C 2 + C 3 + C 4
0 + 0 − 2 − 2 = − 4
Use Green's Theorem
∫ ∂ R x y \differential y − y 2 \differential x
P = − y 2
Q = x y
∂ Q ∂ x = y
∂ P ∂ y = − 2 y
y − ( − 2 y )
∫ − 1 1 ∫ − 1 1 y + 2 y \differential x \differential y
∫ − 1 1 y + 2 y ∫ − 1 1 1 \differential x \differential y
∫ − 1 1 y + 2 y [ x ] 1 − 1 \differential y
∫ − 1 1 y + 2 y [ 1 − ( − 1 ) ] \differential y
∫ − 1 1 y + 2 y [ 2 ] \differential y
2 ∫ − 1 1 y + 2 y \differential y
2 [ 1 2 y 2 + y 2 ] − 1 1
2 [ 3 2 y 2 ] − 1 1
2 [ 3 2 ( 1 ) 2 − 3 2 ( − 1 ) 2 ]
2 [ 3 2 − 3 2 ] = 0
Exam April 2023
MAT232H S23 - Final Exam (1).pdf
A
1
Which of these is an equation of the tangent line to the curve:
r → ( t ) = ⟨ t 2 + 2 t + 3 , 4 t cos t , 2 e 3 t ⟩
t = 0
r → ( 0 ) = ⟨ 3 , 0 , 2 ⟩
r → ′ ( t ) = ⟨ 2 t + 2 , 4 cos t − 4 t sin t , 6 e t ⟩
r → ′ ( 0 ) = ⟨ 2 , 4 , 6 ⟩
⟨ x , y , z ⟩ = ⟨ 3 , 0 , 2 ⟩ + t ⟨ 1 , 2 , 3 ⟩
2
Find arc length
r → ′ ( t ) = ⟨ t 2 2 , ( 2 t + 1 ) 3 2 3 ⟩
0 ≤ t ≤ 4
x ( t ) = t 2 2
x ′ ( t ) = 1 2 2 t = t
y ( t ) = 1 3 ( 2 t + 1 ) 3 2
y ′ ( t ) = 1 3 3 2 ( 2 ) ( 2 t + 1 ) 1 2
y ′ ( t ) = ( 2 t + 1 ) 1 2
∫ 0 4 x ′ ( t ) 2 + y ′ ( t ) 2 \differential t
∫ 0 4 t 2 + 2 t + 1 \differential t
x y = 1
x + y = 2
∫ 0 4 t + 1 \differential t
[ 1 2 t 2 + t ] 0 4
[ 1 2 4 2 + 4 ]
[ ( 2 2 ) 2 2 + 4 ]
[ ( 4 ) 2 2 + 4 ]
[ 16 2 + 4 ]
[ 8 + 4 ] = 12
3
Find max and min
g ( x , y ) = x 2 − 2 x y + 2 y
R = { ( x , y ) : 0 ≤ x ≤ 3 , 0 ≤ y ≤ 2 }
Interior
g x = 2 x − 2 y
g y = − 2 x + 2
g x = 0
g y = 0
( 1 , 1 )
Boundary
( 0 , 0 )
( 0 , 2 )
( 3 , 0 )
( 3 , 2 )
( 0 , 0 ) → ( 0 , 2 )
g ( 0 , y ) = 2 y
g x ( 0 , y ) = 2
Nothing on here
( 0 , 2 ) → ( 3 , 2 )
g ( x , 2 ) = x 2 − 4 x + 4
g x ( x , 2 ) = 2 x − 4
2 x = 4
x = 2
y = 2
( 2 , 2 )
( 3 , 2 ) → ( 3 , 0 )
g ( 3 , y ) = 9 − 4 y
g x ( 3 , y ) = − 4
Nothing on here
( 3 , 0 ) → ( 0 , 0 )
g ( x , 0 ) = x 2
g x ( x , 0 ) = 2 x
x = 0
y = 0
( 0 , 0 )
Check
Point Value Result ( 0 , 0 ) 0 Min ( 0 , 2 ) 4 ( 3 , 0 ) 9 Max ( 3 , 2 ) 1 ( 2 , 2 ) 0 Min ( 1 , 1 ) 1
4
Which are true
1:
x = t − t 2
y = t − t 3
d 2 y d x 2 = 2 − 6 t − 6 t 2 ( 1 − 2 t ) 3
x ′ = 1 − 2 t
y ′ = 1 − 3 t 2
\differential y \differential x = \differential y \differential t \differential x \differential t
\differential y \differential x = 1 − 3 t 2 1 − 2 t
d 2 y d x 2 = d d t ( \differential y \differential x ) \differential x \differential t
\differential \differential t ( 1 − 3 t 2 1 − 2 t )
u = 1 − 3 t 2
v = 1 − 2 t
u ′ = − 6 t
v ′ = − 2
u ′ v − v ′ u v 2
− 6 t ( 1 − 2 t ) − ( − 2 ) ( 1 − 3 t 2 ) ( 1 − 2 t ) 2
( − 6 t + 12 t 2 ) + 2 ( 1 − 3 t 2 ) ( 1 − 2 t ) 2
− 6 t + 12 t 2 + 2 − 6 t 2 ( 1 − 2 t ) 2
6 t 2 − 6 t + 2 ( 1 − 2 t ) 2
d 2 y d x 2 = 6 t 2 − 6 t + 2 ( 1 − 2 t ) 2 1 − 2 t = − 6 t 2 + 6 t − 2 ( 2 t − 1 ) 3
True
2:
r = 4 2 cos θ − sin θ is the line with m = 2 and b = − 4
2 r cos θ − r sin θ = 4
2 x − y = 4
− y = 4 − 2 x
y = 2 x − 4
True
3:
The direction of zero change at ( a , b ) on z = f ( x , y ) are orthogonal to ∇ → f ( a , b )
True because ∇ → f is normal to f everywhere.
When we have 0 change, we're still on f
Still orthogonal
4:
Tangent plane to f ( x , y ) = ln ( 2 x + y ) at ( − 1 , 3 ) is 2 x + y − z − 1 = 0
f ( − 1 , 3 ) = ln ( − 2 + 3 ) = ln 1 = 0
f x = 2 2 x + y
f x ( − 1 , 3 ) = 2 − 2 + 3 = 2 1
f y = 1 2 x + y
f y ( − 1 , 3 ) = 1 2 ( − 1 ) + 3 = 1 1 = 1
z = 2 ( x + 1 ) + ( y − 3 )
z = 2 x + 2 + y − 3
z = 2 x + y − 1
True
5
Which are true
1:∫ 0 1 ∫ 0 3 x e x y \differential x \differential y = e 3 − 4
∫ 0 3 x ∫ 0 1 e x y \differential y \differential x
∫ 0 3 x [ x − 1 e x y ] 0 1 \differential x
∫ 0 3 x [ x − 1 e x − x − 1 ] \differential x
∫ 0 3 e x − 1 \differential x
[ e x − x ] 0 3
[ e 3 − 3 ] − e 0
e 3 − 4
True
2:
f ( x , y , z ) = 2 x y + z
C is r → ( t ) = ⟨ cos t , sin t , t ⟩
0 ≤ t ≤ π
∫ C f ( x , y , z ) \differential s = 2 ∫ 0 π sin 2 t + t \differential t
3: A line integral ∫ C F → ⋅ d r → is independent of path in the domain D on F → if and only if ∫ C ′ F → ⋅ d r → = 0 for every closed path C ′ in D
I would say false, we don't know if it's a conservative field by that.
4:
B
Exam 2022 April
MAT232H S22 - Final Exam (2).pdf
1
a
If x = f ( t ) and y = g ( t ) are both twice differentiable
Then d 2 y d x 2 = d 2 y d t 2 d 2 x d t 2
No, the chain rule says it's d 2 y d x 2 = \differential \differential t ( \differential y \differential x ) \differential x \differential t
b
Curve with r → ( t ) = ⟨ 3 − t 4 , 5 t 4 − 2 , t 4 ⟩ is a line
Check if the derivative is constant
r → ′ ( t ) = ⟨ − 4 t 3 , 20 t 3 , 4 t 3 ⟩
Not constant, not a line
c
f ( x , y ) = 2 x y
D u → f ( 1 , 2 ) = 4 in the direction u → = ⟨ 3 5 , 4 5 ⟩
Check if that's a unit vector
9 25 + 16 25 = 1
∇ → f ( x , y ) = ⟨ 2 y , 2 x ⟩
∇ → f ( 1 , 2 ) = ⟨ 2 , 4 ⟩ = ⟨ 1 , 2 ⟩
D u → f = ⟨ 2 , 4 ⟩ ⋅ ⟨ 3 5 , 4 5 ⟩
6 5 + 16 5
22 5 ≠ 4
d
The function F → ( x , y ) = ⟨ x 2 y , cos y , e ⟩ is a vector field
No because z component is not of the form z ( x , y , z )
e
Evaluating ∫ C ∇ → f ⋅ d r → = 4 where f ( x , y , z ) = cos π x + sin π y − x y z and C is any path that starts at ( 1 , 1 2 , 2 ) and ends at ( 2 , 1 , − 1 )
This is path independent because we have a gradient field
f ( 2 , 1 , − 1 ) − f ( 1 , 1 2 , 2 )
( cos 2 π + sin 2 π − ( 2 ) ( 1 ) ( − 1 ) ) − ( cos π + sin π 2 − ( 1 ) ( 1 2 ) ( 2 ) )
( 3 ) − ( − 1 )
4
True
2
a
Determine if f ( x , y ) = e x sin y + e y cos x satisfies laplace's equation
∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = 0
f x = e x sin y − e y sin x
f y = e x cos y + e y cos x
f x x = e x sin y − e y cos x
f y y = − e x sin y + e y cos x
e x sin y − e y cos x − e x sin y + e y cos x = 0
True
b
w = x y + z 2
x = t 2 e s
y = t cos s
z = sin t
find ∂ w ∂ t | s = 0 , t = π
∂ w ∂ t = ∂ w ∂ x ∂ x ∂ t + ∂ w ∂ y ∂ y ∂ t + ∂ w ∂ z ∂ z ∂ t
w x = y
w y = x
w z = 2 z
x t = 2 t e s
y t = cos s
z t = cos t
∂ w ∂ t = 2 t y e s + x cos s + 2 z cos t
∂ w ∂ t | s = 0 , t = π = 2 t y + x − 2 z
∂ w ∂ t | s = 0 , t = π = 2 π 2 cos ( 0 ) + π 2 − 2 sin π
∂ w ∂ t | s = 0 , t = π = 2 π 2 + π 2
∂ w ∂ t | s = 0 , t = π = 3 π 2
c
Find critical points and classify
f ( x , y ) = x 5 y + x y 5 + x y
f x = 5 x 4 y + y 5 + y
f y = x 5 + 5 x y 4 + x
f x x = 20 x 3 y
f y y = 20 x y 3
f x y = 5 x 4 + 5 y 4 + 1
f x = 0
f y = 0
5 x 4 y + y 5 + y = 0
y ( 5 x 4 + y 4 + 1 ) = 0
x 5 + 5 x y 4 + x = 0
x ( x 4 + 5 y 4 + 1 ) = 0
y = 0
x = 0
( 0 , 0 )
5 x 4 + y 4 + 1 = 0
x 4 + 5 y 4 + 1 = 0
4 x 4 = 4 y 4
x 4 = y 4
± x 2 = ± y 2
Since negative won't work
x 2 = y 2
± x = ± y
left=-3; right=5;
top=5; bottom=-5;
---
x=y^2
x=y
y=0
y=2
y=1
left=-3; right=5;
top=5; bottom=-5;
---
y=x
y=2x
y=2x-2
y=x+1
x = u − v
y = 2 u − v
left=-3; right=5;
top=5; bottom=-5;
---
(1,0)
(0,0)
(4/3,-2/3)
(7/3,-2/3)