MAT223 Lecture 02

\begin{document}
  \begin{tikzpicture}[x={(0.8cm,-0.2cm)}, y={(0.5cm,0.4cm)}, z={(0cm,1cm)}, scale=0.9]

    % Case 1: Two planes intersecting in a line
    \begin{scope}[shift={(0,0,0)}]
      \node at (0,0,2.5) {\textbf{Two Planes: Line Intersection}};
      % Horizontal Plane
      \filldraw[color=blue, fill opacity=0.3] (-1.5,-2,0) -- (1.5,-2,0) -- (1.5,2,0) -- (-1.5,2,0) -- cycle;
      % Vertical Plane
      \filldraw[color=red, fill opacity=0.3] (0,-2,-1.2) -- (0,2,-1.2) -- (0,2,1.2) -- (0,-2,1.2) -- cycle;
      % Intersection Line
      \draw[ultra thick, color=black] (0,-2,0) -- (0,2,0);
    \end{scope}

    % Case 2: Two parallel planes (no intersection)
    \begin{scope}[shift={(6,0,0)}]
      \node at (0,0,2.5) {\textbf{Two Parallel Planes}};
      % Bottom Plane
      \filldraw[color=blue, fill opacity=0.3] (-1.5,-1.5,0) -- (1.5,-1.5,0) -- (1.5,1.5,0) -- (-1.5,1.5,0) -- cycle;
      % Top Plane
      \filldraw[color=red, fill opacity=0.3] (-1.5,-1.5,1.2) -- (1.5,-1.5,1.2) -- (1.5,1.5,1.2) -- (-1.5,1.5,1.2) -- cycle;
    \end{scope}

    % Case 3: Three planes intersecting in a common line
    \begin{scope}[shift={(0,-6,0)}]
      \node at (0,0,2.5) {\textbf{Three Planes: Common Line}};
      % Plane 1 (0 degrees)
      \filldraw[color=blue, fill opacity=0.3] (0,-1.5,-1.2) -- (1.5,-1.5,-1.2) -- (1.5,1.5,-1.2) -- (0,1.5,-1.2) -- (0,1.5,1.2) -- (1.5,1.5,1.2) -- (1.5,-1.5,1.2) -- (0,-1.5,1.2) -- cycle;
      % Plane 2 (120 degrees)
      \filldraw[color=red, fill opacity=0.3] (0,-1.5,-1.2) -- (-0.75, 1.3, -1.5) -- (-0.75, 1.3, 1.5) -- (0,-1.5,1.2) -- cycle;
      % Plane 3 (240 degrees)
      \filldraw[color=green, fill opacity=0.3] (0,-1.5,-1.2) -- (-0.75, -1.3, -1.5) -- (-0.75, -1.3, 1.5) -- (0,-1.5,1.2) -- cycle;
      % Common Line
      \draw[ultra thick, color=black] (0,-1.5,-1.2) -- (0,1.5,1.2);
      % Note: The coordinates are adjusted to show the "spine" clearly
      \draw[ultra thick, color=black] (0,-1.5,-1.2) -- (0,1.5,1.2);
    \end{scope}

    % Case 4: Three planes intersecting in a point
    \begin{scope}[shift={(6,-6,0)}]
      \node at (0,0,2.5) {\textbf{Three Planes: Common Point}};
      % XY Plane
      \filldraw[color=blue, fill opacity=0.3] (0,0,0) -- (1.8,0,0) -- (1.8,1.8,0) -- (0,1.8,0) -- cycle;
      % YZ Plane
      \filldraw[color=red, fill opacity=0.3] (0,0,0) -- (0,1.8,0) -- (0,1.8,1.8) -- (0,0,1.8) -- cycle;
      % XZ Plane
      \filldraw[color=green, fill opacity=0.3] (0,0,0) -- (1.8,0,0) -- (1.8,0,1.8) -- (0,0,1.8) -- cycle;
      % Intersection Point
      \fill[color=black] (0,0,0) circle (2.5pt);
    \end{scope}

  \end{tikzpicture}
\end{document}
\begin{document}
  \begin{tikzpicture}[x={(-0.5cm,-0.5cm)}, y={(1cm,0cm)}, z={(0cm,1cm)}, scale=1.2]
    % Define coordinates for a rectangular prism
    \coordinate (A) at (0,0,0);
    \coordinate (B) at (0,4,0);
    \coordinate (C) at (2,4,0);
    \coordinate (D) at (2,0,0);
    \coordinate (E) at (0,0,3);
    \coordinate (F) at (0,4,3);
    \coordinate (G) at (2,4,3);
    \coordinate (H) at (2,0,3);

    % Draw the frame of the prism with dashed lines for 3D context
    \draw[dashed, gray] (A) -- (B) -- (C) -- (D) -- cycle;
    \draw[dashed, gray] (E) -- (F) -- (G) -- (H) -- cycle;
    \draw[dashed, gray] (A) -- (E);
    \draw[dashed, gray] (B) -- (F);
    \draw[dashed, gray] (C) -- (G);
    \draw[dashed, gray] (D) -- (H);

    % Draw Line 1 (L1) along the front bottom edge
    \draw[very thick, color=blue] (-1,4,0) -- (3,4,0) node[right] {$L_1$};

    % Draw Line 2 (L2) along the back-left vertical edge
    \draw[very thick, color=red] (0,0,-1) -- (0,0,4) node[above] {$L_2$};

    % Add a small note about the skew relationship
    \node[anchor=north, align=center, font=\small] at (1,2,-1.5) {Lines $L_1$ and $L_2$ are skew;\\no single plane contains both.};
  \end{tikzpicture}
\end{document}

mat223_1_1.pdf